Группа компаний «Рузкабель»
Подольск
Ваш город - Подольск?
+7 495 246 50 50
Блуждающие токи

Блуждающие токи

Поверхность земли – проводник электрического тока. Не случайно её используют как среду для устройства контуров заземления энергообъектов. Но электропроводящие свойства земли приводят и к появлению блуждающих токов – явлению, оказывающему вредное воздействие на коммуникации, расположенные в ней. 

В этих случаях не только грунт является здесь проводником, но и металлические конструкции, находящиеся полностью или частично под землёй, такие как трубопроводы, кабельные линии, опоры контактных сетей и так далее. Даже просто соприкасающиеся с землёй металлические конструкции подвержены действию блуждающих токов. 

Блуждающие токи – токи, возникающие в земле при её использовании в качестве токопроводящей среды. Вызывают коррозию металлических предметов, полностью или частично находящихся под землёй, а иногда и лишь соприкасающихся с поверхностью земли. 

Блуждающие токи опасны, прежде всего, своей электрохимической активностью, которая приводит к ускоренной коррозии подземных металлических сооружений, в том числе трубопроводов и газопроводов. Они могут выводить из строя незащищённые сооружения в течение нескольких месяцев. В ряде случаев эти токи являются следствием аварийной утечки с линий электропередачи. 

Переменный блуждающий ток также опасен, но представляют меньшую опасность, чем постоянный ток. Коррозия под действием переменных блуждающих токов менее сильна. 

Такой коррозии подвержены подземные стальные коммуникации, проходящие вблизи трамвайных путей, сварочных площадок и цехов электролиза. 

Источниками блуждающих токов являются трамвай, метрополитен и электрифицированный на постоянном токе пригородный рельсовый транспорт. 

Совсем другое дело будет в месте, где блуждающие токи переходят с металлических оболочек кабельных линий в землю (выход). Потенциал оболочек кабеля в этом случае будет выше потенциала земли (анодная зона). В анодной зоне металлические оболочки кабельных линий будут разрушаться. Количество растворяющегося в анодной зоне металла по закону Фарадея пропорционально величине блуждающего тока, времени, в течение которого он протекает, и зависит от рода металла, из которого выполнены оболочки кабельных линий. 

Воздействие блуждающих токов на разные материалы (как правило, металлы, железобетон и бетон) можно оценить по скорости электрокоррозии металла и среднегодовым потерям несущей способности металлических и железобетонных конструкций, соотнесённым с напряжённостью поля блуждающих токов. При воздействии блуждающих токов на подземные металлические трубопроводы процесс электролиза сопровождается анодными и катодными реакциями, протекающими на границе металл-грунт. Основной анодной реакцией является растворение стали. 

Под землёй расположено огромное число различных объектов и изделий из металла: трубопроводы, кабельные линии, железобетон и др. Известно, что металл – это хороший проводник электрического тока, следовательно, заряд в данной ситуации пройдет не через почву, а по имеющемуся в ней металлу. Зона, через которую электрический ток входит в грунт, называется «катодной зоной», а через которую выходит – «анодной зоной». 

Известно, что процесс коррозии в них неизбежен, а подземные воды отличаются большим содержанием растворимых микроэлементов и служат отличным проводником электричества. Таким образом, в металлических трубах под землёй из-за процесса электролиза происходят коррозийные процессы. Очень хорошо коррозия выражается в анодной зоне, а в катодной разрушения менее выражены.

Подводя итог, стоит отметить, что блуждающие токи оказывают разрушительное влияние на металлические изделия, являясь при этом причиной серьёзных экономических потерь. 

Как избежать пагубного влияния блуждающего тока?

Для проложенных в земле металлоконструкций, применяются две методики защиты: пассивная и активная. Подробно опишем каждую из них. 

Пассивная защита

Данная методика предусматривает нанесение на поверхность металлоконструкций специального изолирующего слоя, образующего защитный барьер между землёй и металлической оболочкой. В качестве изоляционного материала используются полимеры, различные виды эпоксидных смол, битумное покрытие и т.д. 

К сожалению, современная технология не позволяет создать защитный барьер, обеспечивающий полную изоляцию. Любое покрытие обладает определённой диффузионной проницаемостью, поэтому при данном способе возможна только частичная изоляция от грунта. Помимо этого следует учитывать, что в процессе транспортировки и монтажа может быть нанесено повреждение защитному слою. В результате на нем образуются различные дефекты изоляции в виде микротрещин, царапин, вмятин и сквозных повреждений. 

Поскольку рассмотренный метод не обладает достаточной эффективностью, он применяется в качестве дополнения активной защиты, о которой пойдёт речь далее.

Активная защита

Под данным термином подразумевается управление механизмами электрохимических процессов, которые протекают в местах контакта металлических конструкций с образующимся в грунте электролитом. Для этой цели применяется катодная поляризация, при которой отрицательный потенциал смещает естественный. 

Реализовать такую защиту можно гальваническим методом или используя источник постоянного тока. В первом случае применяется эффект гальванической пары, в которой анод, подвергается разрушению (жертвенный анод), защищая при этом металлоконструкцию, у которой потенциал несколько ниже. Описанный способ эффективен для грунтов с низким сопротивлением (не более 50,0 Ом*м), при более низком уровне проводимости данный метод не применяется. 

Применение источника постоянного тока в катодной защите позволяет не зависеть от сопротивления грунта. Как правило, источник изготовлен на базе преобразователя, запитанного от электрической цепи переменного тока. Конструктивное исполнение источника позволяет задать уровень защитных токов в соответствии со сложившимися условиями.